A Littlewood-Richardson type rule for row-strict quasisymmetric Schur functions
نویسنده
چکیده
We establish several properties of an algorithm defined by Mason and Remmel (2010) which inserts a positive integer into a row-strict composition tableau. These properties lead to a Littlewood-Richardson type rule for expanding the product of a row-strict quasisymmetric Schur function and a symmetric Schur function in terms of row-strict quasisymmetric Schur functions. Résumé. Nous établissons plusieurs propriétés d’un algorithme défini par Mason et Remmel (2010), qui insère un entier positif dans un tableau dont la forme est une composition, avec ordre strict sur les lignes (row-strict). Ces propriétés conduisent à une règle de type Littlewood-Richardson pour étendre le produit d’une fonction de Schur quasisymétrique “row-strict” et d’une fonction de Schur symétrique en termes de fonctions de Schur quasi-symétriques “row-strict”.
منابع مشابه
Symmetric Skew Quasisymmetric Schur Functions
The classical Littlewood-Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood-Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood-Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood...
متن کاملMultiplication Rules for Schur and Quasisymmetric Schur Functions
An important problem in algebraic combinatorics is finding expansions of products of symmetric functions as sums of symmetric functions. Schur functions form a well-known basis for the ring of symmetric functions. The Littlewood-Richardson rule was introduced to expand the product of two Schur functions as a positive sum of Schur functions. Remmel and Whitney introduced an algorithmic way to fi...
متن کاملLittlewood-Richardson rules for symmetric skew quasisymmetric Schur functions
The classical Littlewood-Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood-Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood-Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood...
متن کاملSkew row-strict quasisymmetric Schur functions
Mason and Remmel introduced a basis for quasisymmetric functions known as the row-strict quasisymmetric Schur functions. This basis is generated combinatorially by fillings of composition diagrams that are analogous to the row-strict tableaux that generate Schur functions. We introduce a modification known as Young row-strict quasisymmetric Schur functions, which are generated by row-strict You...
متن کاملRefinements of the Littlewood-Richardson Rule
In the prequel to this paper [5], we showed how results of Mason [11], [12] involving a new combinatorial formula for polynomials that are now known as Demazure atoms (characters of quotients of Demazure modules, called standard bases by Lascoux and Schützenberger [6]) could be used to define a new basis for the ring of quasisymmetric functions we call “Quasisymmetric Schur functions” (QS funct...
متن کامل